A DISTRIBUTIONAL APPROACH TO FRACTIONAL SOBOLEV SPACES AND FRACTIONAL VARIATION

GIORGIO STEFANI

We develop a new distributional approach to fractional Sobolev spaces and to a newly-defined fractional variation. Given a parameter $\alpha \in (0,1)$, we consider the fractional Riesz gradient $\nabla^\alpha = \nabla I_{1-\alpha}$, where I_s is the Riesz potential operator of order s, and study the spaces $S^{\alpha,p}(\mathbb{R}^n) = \{ f \in L^p(\mathbb{R}^n) : \nabla^\alpha f \in L^p(\mathbb{R}^n) \}$, for $p \in [1, +\infty]$, and $BV^\alpha(\mathbb{R}^n) = \{ f \in L^1(\mathbb{R}^n) : |D^\alpha f|(\mathbb{R}^n) < +\infty \}$, both defined in the usual distributional sense via the fractional integration-by-parts formula $\int_{\mathbb{R}^n} f \div \varphi dx = -\int_{\mathbb{R}^n} \nabla^\alpha f \cdot \varphi dx$ valid for all functions $f \in C_0^\infty(\mathbb{R}^n)$ and vector fields $\varphi \in C_0^\infty(\mathbb{R}^n; \mathbb{R}^n)$. Our distributional approach allows to develop a quite rich and flexible theory, paralleling the known Sobolev–De Giorgi theory in this new fractional framework. We introduce new notions of fractional Caccioppoli α-perimeter and of fractional reduced boundary and prove several results, such as: a fractional version of De Giorgi’s Blow-up Theorem [5]; the identification $S^{\alpha,p} = L^{\alpha,p}$ for $p \in (1, +\infty)$, where $L^{\alpha,p}$ is the usual fractional Bessel potential space, and an asymptotic study of the involved fractional operators, both in the pointwise and in the Γ-limit sense, via some new fractional interpolation inequalities [3, 6]; fine properties of BV^α-functions and of the fractional variation [4]; new fractional Leibniz and Gauss–Green formulas [7]. Very recently, our theory has revealed to be a promising field for the study of several new challenging applications of the theory of PDEs and of the Calculus of Variations to fractional operators [1, 2, 8, 9, 10, 11, 12, 13]. This is a research project in collaboration with Giovanni E. Comi. We acknowledge the collaboration of Elia Bruè, Mattia Calzi and Daniel Spector.

REFERENCES