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We develop a new distributional approach to fractional Sobolev spaces and to a newly-
defined fractional variation. Given a parameter α ∈ (0, 1), we consider the fractional Riesz
gradient ∇α = ∇I1−α, where Is is the Riesz potential operator of order s, and study the spaces
Sα,p(Rn) = {f ∈ Lp(Rn) : ∇αf ∈ Lp(Rn;Rn)}, for p ∈ [1,+∞], and BV α(Rn) = {f ∈ L1(Rn) :
|Dαf |(Rn) < +∞}, both defined in the usual distributional sense via the fractional integration-
by-parts formula

∫
Rn f divαϕdx = −

∫
Rn ∇

αf ·ϕdx valid for all functions f ∈ C∞c (Rn) and vector
fields ϕ ∈ C∞c (Rn;Rn). Our distributional approach allows to develop a quite rich and flexible
theory, paralleling the known Sobolev–De Giorgi theory in this new fractional framework. We
introduce new notions of fractional Caccioppoli α-perimeter and of fractional reduced boundary
and prove several results, such as: a fractional version of De Giorgi’s Blow-up Theorem [5]; the
identification Sα,p = Lα,p for p ∈ (1,+∞), where Lα,p is the usual fractional Bessel potential
space, and an asymptotic study of the involved fractional operators, both in the pointwise and
in the Γ-limit sense, via some new fractional interpolation inequalities [3, 6]; fine properties
of BV α-functions and of the fractional variation [4]; new fractional Leibniz and Gauss–Green
formulas [7]. Very recently, our theory has revealed to be a promising field for the study of
several new challenging applications of the theory of PDEs and of the Calculus of Variations to
fractional operators [1, 2, 8, 9, 10, 11, 12, 13]. This is a research project in collaboration with
Giovanni E. Comi. We acknowledge the collaboration of Elia Bruè, Mattia Calzi and Daniel
Spector.
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[11] Šilhavý, M., Fractional vector analysis based on invariance requirements (Critique of coordinate ap-

proaches), M. Continuum Mech. Thermodyn., pp. 1-22, 2019.
[12] Spector, D., A noninequality for the fractional gradient, Port. Math. 76(2), pp. 153–168, 2019.
[13] Spector, D., An optimal Sobolev embedding for L1, J. Funct. Anal. 279(3), 108559, 26, 2020.

Scuola Internazionale di Studi Superiori Avanzati (SISSA), via Bonomea 256, 34136 Trieste
Email address: giorgio.stefani.math@gmail.com


