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We develop a new distributional approach to fractional Sobolev spaces and to a newly-
defined fractional variation. Given a parameter a € (0,1), we consider the fractional Riesz
gradient V* = VI _,, where [, is the Riesz potential operator of order s, and study the spaces
SeP(R™) = {f € LP(R™) : VOf € LP(R™*;R™)}, for p € [1,4+0o0], and BV*(R") = {f € L'(R") :
| D f|(R™) < 400}, both defined in the usual distributional sense via the fractional integration-
by-parts formula [, fdiviede = — [p, V* f-@ dz valid for all functions f € C2°(R™) and vector
fields ¢ € C°(R™;R™). Our distributional approach allows to develop a quite rich and flexible
theory, paralleling the known Sobolev—De Giorgi theory in this new fractional framework. We
introduce new notions of fractional Caccioppoli a-perimeter and of fractional reduced boundary
and prove several results, such as: a fractional version of De Giorgi’s Blow-up Theorem [5]; the
identification S*P = L*P for p € (1,4+00), where L*P is the usual fractional Bessel potential
space, and an asymptotic study of the involved fractional operators, both in the pointwise and
in the I'-limit sense, via some new fractional interpolation inequalities [3, 6]; fine properties
of BV*functions and of the fractional variation [4]; new fractional Leibniz and Gauss—Green
formulas [7]. Very recently, our theory has revealed to be a promising field for the study of
several new challenging applications of the theory of PDEs and of the Calculus of Variations to
fractional operators [1, 2, 8, 9, 10, 11, 12, 13]. This is a research project in collaboration with
Giovanni E. Comi. We acknowledge the collaboration of Elia Brue, Mattia Calzi and Daniel
Spector.
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