FANO MANIFOLDS WITH LEFSCHETZ DEFECT 3

SAVERIO ANDREA SECCI

The Lefschetz defect δ_X is a numerical invariant associated to a smooth complex, Fano variety X, and it depends on the Picard number of prime divisors contained in X. Explicitly, consider the real vector space $\mathcal{N}_1(X)$ of real 1-cycles up to numerical equivalence. Its dimension is the Picard number ρ_X . Now, for any prime divisor D in X we define $\mathcal{N}_1(D, X)$ as the image of the pushforward $\iota_* \colon \mathcal{N}_1(D) \to \mathcal{N}_1(X)$ induced by the inclusion $\iota \colon D \hookrightarrow X$, that is the subvector space of $\mathcal{N}_1(X)$ generated by the numerical classes in X of curves in D. Finally,

 $\delta_X := \max\{\operatorname{codim} \mathcal{N}_1(D, X) | D \text{ a prime divisor in } X\}.$

The main property of δ_X is that if $\delta_X \ge 4$, then X is isomorphic to a product $S \times T$, with S a del Pezzo surface of Picard number $\rho_S = \delta_X + 1$ [1, Th. 3.3].

In this talk we discuss a classification result for smooth Fano varieties with $\delta_X = 3$, which provides a generalisation of [2] to any dimension and Picard number: although X is not necessarily a product, it still has a very explicit description. That is, there exist a smooth Fano variety T of dimension dim $T = \dim X - 2$ and Picard number $\rho_T = \rho_X - 4$, and a fibration $\sigma: X \to T$ such that the fibres are del Pezzo surfaces, and σ factorises as a \mathbb{P}^2 -bundle over T and the blow-up along three pairwise disjoint smooth, irreducible, codimension 2 subvarieties, horizontal for the \mathbb{P}^2 -bundle over T. We explicitly describe all possible \mathbb{P}^2 -bundles and centres of the blow-up.

Moreover, we see some applications of the structure theorem: we describe the fibres, the relative contractions and the different factorisations of σ , and finally we describe in more details the case $\rho_X = 5$ and conclude the classification for dim X = 4.

This talk is based on a joint work with C. Casagrande and E. A. Romano [3].

References

- C. CASAGRANDE, On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér. Volume 45, pp. 363–403 (2012).
- [2] C. CASAGRANDE, E. A. ROMANO, Classification of Fano 4-folds with Lefschetz defect 3 and Picard number, J. Pure Appl. Algebra, Volume 226, Issue 3 (2022).
- [3] C. CASAGRANDE, E. A. ROMANO, S. A. SECCI, Fano manifolds with Lefschetz defect 3. Preprint arXiv:2201.02413 (2022).