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In this talk we will explore the interplay between Deep Learning and Control Theory. The
starting point are the papers [2, 3], where it was independently observed that Residual Neural
Networks (ResNets) can be naturally interpreted as discretization of continuous-time control
systems. In this framework, it is possible to show that the expressivity of a ResNet is strictly
related to controllability properties of the underlying control system. In this regards, in [1] the
authors considered a linear-control system in Rn of the form

(1) ẋ(t) =
k∑

i=1

Fi(x(t))ui(t), t ∈ [0, 1],

where F1, . . . , Fk : Rn → Rn are regular controlled vector fields, and u1, . . . , uk ∈ L2([0, 1],R)
are the admissible controls. For every u = (u1, . . . , uk) ∈ L2([0, 1],Rk) we can consider the
diffeomorphism Φu : Rn → Rn defined as the evaluation at the final instant of the flow induced
by (1), i.e.,

Φu(x0) := xux0
(1)

for every x0 ∈ Rn, where xux0
: [0, 1] → Rn is the solution of (1) corresponding to the control

u = (u1, . . . , uk) and to the initial datum xux0
(0) = x0. In [1], under mild hypotheses on the

controlled vector fields F1, . . . , Fk, it was proved that, given a diffeomorphism Ψ : Rn → Rn

isotopic to the identity and a compact set K ⊂ Rn, for every ε > 0 there exists a control
u ∈ L2([0, 1],Rk) such that

||Ψ− Φu||C0,K ≤ ε.
Starting from this theoretical result, in [4] we introduced an optimal control problem to model
this approximation task. Indeed, following a data-driven approach, we imagined to observe the
action of the diffeomorphism Ψ on an ensemble of training points {x1, . . . , xN} with N ≥ 1.
Therefore, we considered the following minimization problem on the space of admissible controls:

(2)
1

N

N∑
j=1

|Ψ(xj)− Φu(xj)|22 +
β

2
||u||2L2 → min,

where β > 0 is a hyper-parameter that tunes the L2-norm regularization. The discretization of
(1) leads to a ResNet, and the numerical resolution of (2) can be seen as the training process
for the ResNet just obtained. We explore two possible training strategies. The first one consists
in projecting onto a finite-dimensional subspace of L2([0, 1],Rk) the gradient flow induced by
the functional (2). The second one relies on an iterative algorithm based on the Pontryagin
Maximum Principle. Finally, we provide an estimate for the generalization error by means of a
Γ-convergence result.
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