EXTREMALS AND CRITICAL POINTS OF THE SOBOLEV INEQUALITY

ALBERTO RONCORONI

The starting point of the talk is the sharp version of the classical Sobolev inequality in R™
proved in two independent papers: [8] and [1]. The Sobolev inequality has been object of
several investigations and generalizations. In particular, in [5] the authors prove a Sobolev-
type inequality in R™ for an anisotropic norm (i.e. a function H : R — R convex, positive
1-homogeneous and positive). The proof in [5] is based on the optimal transport technique and
leads to the sharp anisotropic Sobolev inequality. In [4] we realize that the optimal transport
technique can be used to prove a sharp anisotropic Sobolev-type inequality in convex cones of
R™ (see also [6] and [2] for previous results).

Moreover, an important and well-studied result related to the Sobolev inequality is the clas-
sification of critical points, i.e. entire solutions to the so-called critical p-Laplace equation

(1) Apu+uP "t =0 inR",
where A, is the usual p-Laplace operator and p* is the Sobolev critical exponent, explicitly

Apu = div(|VulP2Vu) and p* := P
n—p
It has been shown (see e.g. [3, 7, 9]), exploiting the moving planes method, that positive
solutions to (1) such that u € LP(R") and Vu € LP"(R™) can be completely classified. In the
talk we will consider the anisotropic critical p-Laplace equation in convex cones of R™. Since
the moving plane method strongly relies on the symmetries of the equation and of the domain,
in [4] a different approach to this problem is introduced. In particular, this approach gives a
complete classification of the solutions in an anisotropic setting. More precisely, we characterize
solutions to the critical p-Laplace equation induced by a smooth norm inside any convex cone
of R™.
The talk is based on the paper [4] in collaboration with G. Ciraolo and A. Figalli.
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