GEOMETRY OF 1-CODIMENSIONAL MEASURES IN THE HEISENBERG GROUPS

ANDREA MERLO

In the Euclidean spaces the notion of rectifiability of a measure is linked to the metric by the celebrated:

Theorem 1 (Preiss, [1]). Suppose $0 \le m \le n$ are integers, ϕ is a Radon measure on \mathbb{R}^n and:

(1)
$$0 < \Theta^m(\phi, x) := \lim_{r \to 0} \frac{\phi(U_r(x))}{r^m} < \infty \quad at \ \phi\text{-almost every } x,$$

where $U_r(x)$ is the Euclidean ball of centre x and radious r. Then ϕ is m-rectifiable, i.e., ϕ almost all of \mathbb{R}^n can be covered by countably many m-dimensional Lipschtitz submanifolds of \mathbb{R}^n .

The most difficult part of the proof of Theorem 1 is to show that the existence of the density, namely that (1) holds, implies that the measure ϕ has flat tangents, i.e.:

(2)
$$\operatorname{Tan}(\phi, x) \subseteq \Theta^m(\phi, x) \{ \mathcal{H}^m \sqcup V : V \text{ is an } m \text{-plane} \}$$
 at $\phi \text{-almost every point.}$

The fact that the inclusion (2) implies Theorem 1 is a consequence of the Marstrand-Mattila rectifiability criterion, see for instance [1, Corollary 5.4]. The proof of such inclusion depends on the structure of the Euclidean ball and it is not known whether it is possible to extend it to a general finite dimensional Banach space. The only progress in this direction, to our knowledge, was achieved by A. Lorent, who proved that 2-locally uniform measures in ℓ_{∞}^3 are rectifiable, see Theorem 5 in [4].

In this talk, I will give present the first extension of Theorem 1 outside Euclidean spaces:

Theorem 2 ([5, 6]). Suppose ϕ is a Radon measure in \mathbb{H}^n such that:

(3)
$$0 < \Theta^{2n+1}(\phi, x) := \lim_{r \to 0} \frac{\phi(B_r(x))}{r^{2n+1}} < \infty \quad \text{for } \phi\text{-a.e. } x,$$

where $B_r(x)$ is the Koranyi ball. Then \mathbb{H}^n can be covered ϕ -almost all by countably many $C^1_{\mathbb{H}^n}$ regular surfaces, which are smooth surfaces in a very intrinsic sense and were introduced in [3]
and are fractals from the Euclidean point of view [2].

References

- David Preiss. "Geometry of measures in R n : distribution, rectifiability, and densities". In: Ann. of Math. (2) 125.3 (1987), pp. 537–643. issn: 0003-486X.
- [2] Luigi Ambrosio and Bernd Kirchheim. "Rectifiable sets in metric and Banach spaces". In: Math. Ann. 318.3 (2000), pp. 527–555. issn: 0025-5831
- [3] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. "Rectifiability and perimeter in the Heisenberg group". In: Math. Ann. 321.3 (2001), pp. 479–531. issn: 0025-5831.
- [4] Andrew Lorent. "Rectifiability of measures with locally uniform cube density". In: Proc. London Math. Soc.
 (3) 86.1 (2003), pp. 153–249. issn: 0024-6115.
- [5] Andrea Merlo. "Geometry of 1-codimensional measures in Heisenberg groups". In: Invent. Math. 227.1 (2022), pp. 27–148. ISSN: 0020-9910.
- [6] Andrea Merlo. Marstrand-Mattila rectifiability criterion for 1-codimensional measures in Carnot groups. Preprint on arXiv, arXiv:2007.03236. Accepted for publication in Anal. PDE.

Université de Fribourg