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In the Euclidean spaces the notion of rectifiability of a measure is linked to the metric by the
celebrated:

Theorem 1 (Preiss, [1]). Suppose 0 ≤ m ≤ n are integers, φ is a Radon measure on Rn and:

(1) 0 < Θm(φ, x) := lim
r→0

φ(Ur(x))

rm
<∞ at φ-almost every x,

where Ur(x) is the Euclidean ball of centre x and radious r. Then φ is m-rectifiable, i.e., φ-
almost all of Rn can be covered by countably many m-dimensional Lipschtitz submanifolds of
Rn.

The most difficult part of the proof of Theorem 1 is to show that the existence of the density,
namely that (1) holds, implies that the measure φ has flat tangents, i.e.:

(2) Tan(φ, x) ⊆ Θm(φ, x){HmxV : V is an m-plane} at φ-almost every point.

The fact that the inclusion (2) implies Theorem 1 is a consequence of the Marstrand-Mattila
rectifiability criterion, see for instance [1, Corollary 5.4]. The proof of such inclusion depends
on the structure of the Euclidean ball and it is not known whether it is possible to extend it to a
general finite dimensional Banach space. The only progress in this direction, to our knowledge,
was achieved by A. Lorent, who proved that 2-locally uniform measures in `3∞ are rectifiable,
see Theorem 5 in [4].

In this talk, I will give present the first extension of Theorem 1 outside Euclidean spaces:

Theorem 2 ([5, 6]). Suppose φ is a Radon measure in Hn such that:

(3) 0 < Θ2n+1(φ, x) := lim
r→0

φ(Br(x))

r2n+1
<∞ for φ-a.e. x,

where Br(x) is the Koranyi ball. Then Hn can be covered φ-almost all by countably many C1
Hn-

regular surfaces, which are smooth surfaces in a very intrinsic sense and were introduced in [3]
and are fractals from the Euclidean point of view [2].
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