VARIATIONAL CONVERGENCES FOR FUNCTIONALS AND DIFFERENTIAL OPERATORS DEPENDING ON VECTOR FIELDS

ALBERTO MAIONE

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. The X-gradient is a family of Lipschitz continuous vector fields $X = (X_1, .., X_m)$ $(m \leq n)$ that are pointwise linearly independent, outside Lebesgue measure zero sets. The Sobolev spaces associated with the X-gradient are

$$W_X^{1,p}(\Omega) := \{ u \in L^p(\Omega) : X_j u \in L^p(\Omega) \text{ for } j = 1, \dots, m \}$$

and $W_{X,0}^{1,p}(\Omega)$, defined as the closure of $\mathbf{C}_c^1(\Omega) \cap W_X^{1,p}(\Omega)$ in $W_X^{1,p}(\Omega)$. We are interested in families X satisfying a global Poincaré inequality and such that $W_{X,0}^{1,p}(\Omega)$ compactly embeds into $L^p(\Omega)$, $p \in [1, \infty)$. For such families, the following Γ -compactness result will be showed.

Theorem 1. Let $1 and define the sequence <math>F_h : L^p(\Omega) \to \mathbb{R} \cup \{\infty\}, h \in \mathbb{N}, by$

$$F_h(u) := \begin{cases} \int_{\Omega} f_h(x, Xu(x)) dx & \text{if } u \in W_X^{1,p}(\Omega) \\ +\infty & \text{if } u \in L^p(\Omega) \setminus W_X^{1,p}(\Omega) \end{cases}$$

where $f_h: \Omega \times \mathbb{R}^m \to \mathbb{R}$ is a Carathéodory function, convex w.r.t. the second variable, satisfying

$$c_0|\eta|^p - a_0(x) \le f(x,\eta) \le c_1|\eta|^p + a_1(x)$$
 for a.e. $x \in \Omega$ for any $\eta \in \mathbb{R}^m$,

with $a_0, a_1 \in L^1(\Omega)$ nonnegative and $c_0 \leq c_1$ positive constants, and Borel-measurable on Ω . Then, there exist $f : \Omega \times \mathbb{R}^m \to \mathbb{R}$, satisfying the same hypotheses of f_h (with the same

constants and L^1 functions) and $F: L^p(\Omega) \to \mathbb{R} \cup \{\infty\}$ such that (up to subsequences)

- 1) $F_h \ \Gamma$ -converges to F in the strong topology of $L^p(\Omega)$, as $h \to \infty$;
- 2) the limit F can be represented by

$$F(u) := \begin{cases} \int_{\Omega} f(x, Xu(x)) dx & \text{if } u \in W^{1,p}_X(\Omega) \\ +\infty & \text{if } u \in L^p(\Omega) \setminus W^{1,p}_X(\Omega) \end{cases}.$$

As a consequence of the previous result, we show that the class of linear differential operators in X-divergence form is closed in the topology of the H-convergence, by adapting a variational approach introduced by Ansini, Dal Maso and Zeppieri [1].

This is a joint work with Andrea Pinamonti, Francesco Serra Cassano (University of Trento) [4, 5], Fabio Paronetto (University of Padova) and Eugenio Vecchi (University of Bologna) [3].

References

- N. ANSINI, G. DAL MASO, C.I. ZEPPIERI, New results on Γ-limits of integral functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 31, no. 1, pp. 185–202, 2014.
- [2] A. MAIONE, H-convergence for equations depending on monotone operators in Carnot groups, Electron. J. Differential Equations, vol. 2021, no. 13, pp. 1–13, 2021.
- [3] A. MAIONE, F. PARONETTO, E. VECCHI, G-convergence of elliptic and parabolic operators depending on vector fields, preprint.
- [4] A. MAIONE, A. PINAMONTI, F. SERRA CASSANO, Γ-convergence for functionals depending on vector fields. *I. Integral representation and compactness*, J. Math. Pures Appl. (9), vol. 139, pp. 109–142, 2020.
- [5] A. MAIONE, A. PINAMONTI, F. SERRA CASSANO, Γ-convergence for functionals depending on vector fields. II. Convergence of minimizers, preprint.
- [6] A. MAIONE, E. VECCHI, Integral representation of local left-invariant functionals in Carnot groups, Anal. Geom. Metr. Spaces, vol. 8, no. 1, pp. 1–14, 2020.

 $Email \ address: \verb"alberto.maione@mathematik.uni-freiburg.de"$

 $\mathit{URL}: https://aam.uni-freiburg.de/mitarb/maione/index.html?l=en$

Albert-Ludwigs-Universität Freiburg