DEEP LEARNING-BASED REDUCED ORDER MODELS FOR NONLINEAR PARAMETRIZED PDES: APPLICATION TO CARDIAC ELECTROPHYSIOLOGY

STEFANIA FRESCA

Conventional reduced order models (ROMs) anchored to the assumption of modal linear superimposition, such as proper orthogonal decomposition (POD), may reveal inefficient when dealing with nonlinear time-dependent parametrized PDEs, especially for problems featuring coherent structures propagating over time, such as cardiac electrophysiology (EP). To enhance ROM efficiency, we propose a nonlinear approach to set ROMs by exploiting deep learning (DL) algorithms as convolutional neural networks. In the resulting DL-ROM, both the nonlinear trial manifold and the nonlinear reduced dynamics are learned in a non-intrusive way by relying on DL algorithms trained on a set of full order model (FOM) snapshots, obtained for different parameter values. Performing then a former dimensionality reduction on FOM snapshots through POD and using a suitable multi-fidelity pretraining enable, when dealing with large-scale FOMs, to speed-up training times, and decrease the network complexity, substantially. Accuracy and efficiency of the DL-ROM technique are assessed on different parametrized PDE problems in cardiac EP, representing both physiological and pathological scenarios, computational mechanics and fluid dynamics, where new queries to the DL-ROM can be computed in real-time. In particular, DL-ROMs are shown to be able to solve, after the training stage, cardiac EP problems on realistic geometries, for any new scenario in real-time, even in extremely challenging contexts such as re-entry and re-entry break-up problems, modeling the triggering phenomena related with cardiac arrhythmias.

References

- S. Fresca, A. Manzoni 2022 POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. Computer Methods in Applied Mechanics and Engineering, 388, 114181.
- [2] S. Fresca, A. Manzoni L. Dedé, A. Quarteroni 2021 POD-enhanced deep learning-based reduced order models for the real-time simulation of cardiac electrophysiology in the left atrium. Frontiers in Physiology, 12, 1431.
- [3] S. Fresca, A. Manzoni 2021 Real-time simulation of parameter-dependent fluid flows through deep learningbased reduced order models. Fluids, 6(7), 259.
- [4] S. Fresca, A. Manzoni, L. Dedé 2021 A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. Journal of Scientific Computing, 87(2):1-36.
- S. Fresca, A. Manzoni, L. Dedé, A. Quarteroni 2020 Deep learning-based reduced order models in cardiac electrophysiology. PLOS ONE, 15(10):1-32.

 $[\]rm MOX$ - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy

 $Email \ address: \ \tt{stefania.fresca@polimi.it}$